
Supporting Text for A role for MIRO1 in
motility and membrane dynamics of

peroxisomes

1 Details of mathematical model

Our model describes the shape and number of peroxisomes within a cell.
It is a stochastic, population-based model that considers the morphology
of a group of peroxisomes, each of which can grow, divide and turnover.
Since our aim is to understand the basic biophysical mechanisms involved in
peroxisome growth and proliferation, we focus on the peroxisome shape and
ignore both their spatial distribution and interactions between each other.
Further, we only include a few key processes that affect peroxisome size and
number (such as lipid flow and division). This is a deliberate decision that
aims to tease out the main factors responsible for peroxisome morphology.

Although we acknowledge that real peroxisome dynamics is likely to be
considerably more complex than this, we believe that simpler models with
fewer parameters are more valuable and predictive, especially as this is, as
far as we know, the first model describing peroxisome shape. The intention is
that later models will be able to build on the work described here by including
other relevant aspects (such as spatial distribution and interaction).

1.1 Description of model

We describe each peroxisome as consisting of a spherical body of radius
r, with the centre at some position ~x. In addition, each peroxisome has an
optional elongation of length L, emanating at some fixed angle from the body.
This elongation is assumed to be straight and to have constant diameter w, so
that it can be modelled as a cylinder with a hemispherical cap. Although it is
clear that not all real peroxisomes can be described by such a body-elongation
arrangement, and although real elongations often bend and have variable
width, this idealised representation is sufficient for our present purposes.

We consider three processes by which peroxisomes can change shape:
membrane lipid flow, elongation growth, and division. Firstly, peroxisomes
are assumed to grow due to membrane lipids flowing from the ER via mem-
brane contacts [1]. Since there is not unlimited lipid, this process is not
always successful. To model this we assume that, at any given time, there is
some probability p = e−γA that lipid flow occurs, where A is the total surface
area of all peroxisomes and γ a constant that we call the lipid flow constant.
This means that, in our model, lipid flow is always possible but is less likely
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as the total peroxisomal content increases. This assumption that lipid flow
depends only on total peroxisome area is simplistic but sufficient for a first
model. A more complex model could take account of the spatial distribution
of peroxisomes relative to the ER and to de novo lipid production. Although
lipid flow is unlikely to be constant in practice, we assume for simplicity that
there is some fixed rate α at which membrane area tries to flow into the per-
oxisome. Since peroxisomes without elongations still grow, it is likely that
the link to the ER is located somewhere within the body and so we assume
that lipid flow only increases the radius of the body without changing the
elongation length. Thus, in some time t, the effect of successful lipid flow is
to increase r to

√
r2 + αt/(4π) whilst leaving L unchanged.

Secondly, we consider growth of the elongation. New peroxisomes initially
have no elongation (L = 0) and must wait until the body radius is above
some minimum size rmin before the elongation forms. However, once formed,
whenever the body radius is above rmin, the elongation then extends at fixed
speed v. At the moment a new elongation appears, it consists only of a
hemispherical cap of radius w/2, which replaces a spherical cap on the body
of base radius w/2. The membrane area to create this cap is assumed to come

from the body, so that r decreases to
√
r2 − w2/8 + 1

2
r2(1−

√
1− w2/4r2) at

the moment of formation. Here, the second term corresponds to the surface
area of the hemispherical cap and the third term to the surface area of the
removed spherical cap (Aspherical cap = 2πrh, where h is the cap height). The
exact mechanism of extension, such as Pex11β oligomerisation or MIRO1-
driven motion along microtubules, need not be explicitly specified: from a
modelling perspective these mechanisms only differ in the value of v. A
more realistic model could consider a variable speed of extension, but this
is unlikely to play an important role here. The membrane area required in
order to extend the elongation is assumed to come from the body so that the
overall membrane area is conserved during the extension process. This means
that, after extending for time t, the elongation increases in length to L+ vt
with a compensating reduction in body size from r to

√
r2 − wvt/4. The

second term originates from the new surface area (πwvt) of the cylindrical
elongation.

Thirdly, we include peroxisome division, which occurs by the elongation
splitting off to form new peroxisomes. We assume that this can only occur
if the elongation length L is above some minimum value Lmin. We further
assume that peroxisomes with longer elongations are more likely to divide,
which we implement via a fixed rate of division per unit length, β. We
interpret this in a probabilistic manner so that in a small time dt the prob-
ability of division is βLdt. Upon division, the elongation is separated from
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the body, split into regularly-sized compartments of length λ, with each be-
coming a new “daughter” peroxisome. The body of the original peroxisome
remains as the “mother” peroxisome. The small cylinder that forms each
“daughter” becomes the body of the new peroxisome (with membrane area
conserved). After division the “mother” and all “daughter” peroxisomes are
without elongations (L = 0) and must wait until r ≥ rmin before new elon-
gations can form.

In addition, to avoid the number of peroxisomes increasing without limit,
we include peroxisome turnover by introducing a mean lifetime τ for each
peroxisome. This is implemented as a probability p = dt/τ that any given
peroxisome degrades in a time dt. Finally, the position ~x and elongation
angle of each peroxisome undergo diffusion. This is not a crucial part of the
current model and is included mainly to improve visualisation of the results.
Here we are chiefly interested in the shape of peroxisomes rather than their
spatial position. We leave the important issue of spatial distribution for
future models.

1.2 Numerical simulation

Each simulation starts with n = 250 peroxisomes, with each having a ran-
dom initial radius and position, and no elongation (L = 0). The initial radius
is chosen from a truncated normal distribution with mean 70nm, standard
deviation 30nm, minimum 40nm and maximum 100nm. At each time step
(∆t = 1s) we implement the three processes described above: (i) r is in-
creased due to membrane lipid flow with probability e−γA, (ii) L is increased
and r decreased due to elongation growth (for those peroxisomes that are
sufficiently large), and (iii) there is a random chance of division (for those
peroxisomes with sufficiently long elongations). Further, each peroxisome
has probability ∆t/τ of undergoing turnover during each time step. The
simulation is run for at most 10 days and is stopped once an approximate
steady state has been reached (characterised by sufficiently small variations
in n, 〈r〉 and 〈L〉 over the last six hours).

1.3 Parameter values

At any given time we expect a population of peroxisomes of various sizes and
shapes. In particular, at steady state, let n be the number of peroxisomes,
f the fraction of peroxisomes that have elongations, 〈r〉 the average body
radius, and 〈L〉 the average elongation length of those peroxisomes with
elongations (i.e. of those peroxisomes with L > 0). From EM and IMF
images of wild-type cells, we estimated that n ∼ 250, f ∼ 0.1, 〈r〉 ∼ 80nm
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and 〈L〉 ∼ 40nm. Although these values are likely to vary between different
cell types and organisms, they are sufficient for our purpose here, an initial
model that sheds light on the biophysical processes involved and recapitulates
various mutant phenotypes.

The following sections describe how the wild-type model parameters were
estimated. Note that, although it may be possible to find parameters that
better fit the data, the fact that (i) these parameters lead to a good match
with the wild type, (ii) the model can incorporate overexpression of MIRO1,
and (iii) changing only one or two parameters can capture the MFF and
PEX5 deficient phenotypes, suggests that this parameter set is sufficient for
this first generation model.

1.3.1 The elongation diameter w and compartment length λ

Firstly, from EM images, we measured the average elongation diameter to
be about w = 80nm [1, 2]. Then, since the smallest new peroxisomes have
initial radius

√
wλ/4 and since we rarely see peroxisomes smaller than 40nm,

this suggests λ ∼ 80nm.

1.3.2 The minimum elongation length for division Lmin

Next, assuming that most peroxisomes divide very soon after L reaches
Lmin (which is appropriate for the wild type), the average elongation length
〈L〉 ≈ 1

2
Lmin. (This is only approximately true since turnover means that

peroxisomes with longer elongations are rarer than those with shorter elon-
gations.) This motivates setting Lmin = 80nm. Coincidentally, this means
that Lmin = λ, which makes sense since then new peroxisomes smaller than
40nm in radius cannot be formed.

1.3.3 The minimum radius for elongation extension rmin

By assuming that, for elongating peroxisomes, all available lipid flowing into
the body is always used only for elongation growth (i.e. πwv > α), the
average body radius can be estimated as 〈r〉 ∼ (1 − f)(

√
wλ/4 + rmin)/2 +

frmin = 1
4
(1 − f)

√
wλ + 1

2
(1 + f)rmin. Again, this is only an approximation

since the distribution of peroxisome body sizes is not uniform. Using an 〈r〉
of 80nm then leads to rmin ∼ 110nm.

1.3.4 The peroxisome mean lifetime τ

Next, to estimate τ , consider overall lipid flow. In steady state, during some
time ∆t, the total lipid entering the system must exactly balance the lipid
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leaving the system. Since the total lipid area entering (due to lipid flow
into the body) is approximately n · exp(−γn〈A〉) · α∆t, and since the total
leaving (due to turnover) is approximately n · ∆t

τ
· 〈A〉, we find that 〈A〉 =

ατ exp(−γn〈A〉). Then the time between a new peroxisome forming and
first starting to elongate, π(4r2

min − wλ)/(α exp(−γn〈A〉)), can be rewritten
as πτ(4r2

min − wλ)/〈A〉. Taking a value of 3 days for this, and estimating
〈A〉 as 4π〈r〉2 + fπw〈L〉 ≈ 105nm2, we conclude that τ ∼ 1.5 × 105s. This
corresponds to a mean peroxisome lifetime of just under 2 days, which agrees
well with previously measured values [3].

1.3.5 The division rate β

Given that, at least in the wild type, peroxisomes divide before the elongation
length is much greater than Lmin, a peroxisome that reaches Lmin will wait on
average about 1/(βLmin) before division. The lack of significant peroxisome
elongations in wild-type cells suggests this time is quite short. Taking a value
of 10 mins for this, we estimate that β = 2× 10−5/nm/s.

1.3.6 The lipid flow rate α and lipid flow constant γ

By considering only steady-state values, such as n, f , 〈r〉 and 〈L〉, it is not
possible to uniquely fit α and γ. This is because these parameters effectively
only ever appear together in the combination α exp(−γn〈A〉), which is the
maximum possible lipid flow rate multiplied by the probability of lipid flow
actually occurring, and can be thought of as the “effective lipid flow rate”.
However, it is possible to fit one of these parameters by considering the
transient period before steady state. With all other parameters fixed, the
time to reach steady state varies inversely with α: smaller/larger values of
α take longer/shorter to reach steady state. With the above parameters,
our simulations show that choosing α = 75nm2/s means that steady state
is reached in a few tens of hours. Once α is fixed, the lipid flow constant
γ follows from the overall-lipid-flow equation derived in §1.3.4, which gives
γ = ln(ατ/〈A〉)/(n〈A〉) ∼ 2.4× 10−7nm−2.

1.3.7 The elongation extension speed v

Finally, we choose the elongation extension speed v so that elongation growth
normally uses all the lipid flowing into the body. At steady state, this means
that πwv > α exp(−γn〈A〉). In fact, our simulations suggest that a value of
v ∼ 0.3nm/s gives a good match to the experimental data for the wild-type
and the MFF and PEX5 deficient cases.
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1.3.8 Summary

The following table lists all model parameters and their wild-type values.

Parameter Wild-type value Section
Lipid flow rate, α 75nm2/s §1.3.6
Elongation extension speed, v 0.3nm/s §1.3.7
Division rate, β 2× 10−5 /nm/s §1.3.5
Peroxisome mean lifetime, τ 1.5× 105 s §1.3.4
Lipid flow constant, γ 2.4× 10−7 nm−2 §1.3.6
Elongation diameter, w 80nm §1.3.1
Elongation comp. length, λ (sets new PO size) 80nm §1.3.1
Minimum r for elongation extension, rmin 110nm §1.3.3
Minimum L for division, Lmin 80nm §1.3.2
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